• Breher

    Research Group

  • Breher

    Research Group

  • Breher

    Research Group

  • Breher

    Research Group

  • Breher

    Research Group

Research


Research

Our principal research interests are summarised here.

Click Here
Publications


Publications

A detailed listing of our publications can be found in this section.

Click Here
Team


Team

Current and former group members, also including some group pictures.

Click Here
Education


Education

Online documents and links to teaching materials.

Click Here
Facilities


Facilities

Our main research facilities are summarised in this subitem.

Click Here

Recent News

Collaborative study with the group of Wim Klopper on cooperative effects (SFB 3MET): A new concept has been applied to the analysis of UV/Vis spectra of homotrinuclear transition-metal complexes by means of a many-body expansion of the change in the spectrum induced by replacing each of the three transition-metal ions in the complex by another transition-metal ion to yield a new homotrinuclear transition-metal complex. The results were recently published in Chem. Phys. Chem. (click here) and selected as VIP paper (see also here).

Two successful PhD defenses in October: congratulations to Silvia Hohnstein and Florian Walz!!

Silvia

Florian21

Group excursion to the Fun Forest Kandel in August 2015.

Successful Co-Tutelle PhD defense in July: congratulations to Delphine Garnier (sitting in her „Doktorwagen“ in front of the Pallas Athene, Ehrenhof, KIT-CS)!!

Collaborative study with the group of Guy Bertrand: The chemical reduction of a pyridyl-substituted cyclic (alkyl)(amino)carbene (CAAC) iminium gave a highly stable organic radical. The neutral paramagnetic species was fully characterised; the unpaired electron is delocalised on both the CAAC and the pyridine heterocycles. The results were recently published in Chem. Eur. J. (click here) and selected as „Hot Paper“ (see also here).

Nice collaborative study with the group of Hansgeorg Schnöckel: since Mg+ ions are isoelectronic to Na atoms, an easy single electron transfer (SET) can be expected for MgBr. Even at 190 K, the radical MgBr (obtained via its sophisticated condensation) in a metastable solution transfers its electron to a diazadiene entity. A paramagnetic Mg(II) compound [MgBr(L1)˙]2 (L1 = DippN=C(Me)C(Me)=NDipp) is formed consisting of a singly reduced ligand. As shown by EPR investigations, the dimeric complex dissociates in ethereal solvents to two monomeric subunits. In addition, the complex can subsequently be reduced with potassium to furnish again a Mg(I) compound, namely [K(thf)3]2[Mg2(L1)2], which was reported previously. The results were recently published in Chem. Commun. (click here) and featured on the inside front cover of issue 99.


In a collaborative study, the one-electron oxidation of a series of diaryldichalcogenides was studied in the groups of Konrad Seppelt and Jens Beckmann. The electronic and structural properties of the radical cations [(2,6-Mes2C6H3E)2+ (E = S, Se, Te) were probed by Jeff Harmer and our group with the aid of EPR spectroscopy and density functional theory calculations. The paper was recently published in Chem Sci. (click here) and belongs to the Top 25 most downloaded Chemical Science articles October-December 2014 (click here).


The preparation and structures of Tpm-based heterobimetallic complexes are reported, also including the first complexes containing Zn-Cr, Cd-Cr, and Cd-Mo bonds. The nature of the metal-metal bonds was probed by quantum chemical calculations. The results were recently published in Chem. Eur. J. (click here).

In a recent collaborative paper with several groups of the SFB 3MET we reported on a detailed theoretical and spectroscopic study on the electronically excited states of a highly symmetric, trinuclear palladium complex both in the gas phase and in solution. The results were published in Phys. Chem. Chem. Phys. (click here). In a follow-up paper, different time-resolved IR spectroscopic methods covering the femtosecond up to the microsecond range as well as density functional computations have been performed to unravel the structure and character of this complex in the electronically excited state. The results were also published in Phys. Chem. Chem. Phys. (click here).

The preparation and structures of coinage metal complexes of tris(pyrazolyl)methanide-based redox-active metalloligands are reported, together with density functional theory (DFT) calculations and detailed cyclic voltammetry studies in solution in order to elucidate a conceivable electronic interplay between the metal atoms. The results were recently published in Organometallics (click here)

Recently, the 5th German edition of the renowned Inorganic Chemistry textbook “Huheey” appeared, again with contributions from our side.

Huheey, James E. / Keiter, Ellen A. / Keiter, Richard L.

Anorganische Chemie

Hrsg. v. Steudel, Ralf

Bearb. v. Breher, Frank / Finze, Maik / Johrendt, Dirk / Lunk, Hans-Joachim / Kaupp, Martin / Radius, Udo / Schatzschneider, Ulrich
DeGruyter, 2014

By using a multifunctional silyl ligand based on the tris(3,5-dimethylpyrazolyl)silyl scaffold [Si(3,5-Me2pz)3], we succeeded in obtaining the homoleptic tetrakis(silyl) complexes of Pd0 and Pt0, which were characterized by various methods, including multinuclear NMR spectroscopic techniques, cyclic voltammetry in combination with DFT calculations, X-ray crystallography, and EPR spectroscopy. The complexes form very unusual metal-centered heterocubane structures in the solid state and in solution. The rather rigid heterocubane ligand shells were found to facilitate the stepwise, quasi-reversible oxidation to their d9 MI and d8 MII analogues (click here; see also cover of issue 52 and spotlight on ChemistryViews).

Click Here To Access the News Archive
Karlsruhe Institute of Technology (KIT)
Institute of Inorganic Chemistry
Engesserstr. 15
Gebäude 30.45
76131 Karlsruhe

kit-logo-gross

Prof. Dr. Frank Breher
Phone: +49-(0)721-608 448 55
Fax: +49-(0)721-608 470 21
Email: breher@kit.edu